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SUMMARY

An experimental investigation was performed in which surface pressure data, flow
visualization data, and force and moment data were obtained on four conical delta
wing models which differed in leading-edge camber. Experimental flow visualization
data were obtained over a range of flow conditions to determine the various flow
mechanisms which occur on the lee side of cambered delta wings. Extensive surface
pressure data were obtained to evaluate flow conicity, the effect of Reynolds number,
and scale effects both at angle of sideslip and angle of attack. Force and moment
data were obtained to evaluate the potential of separated flows to improve the per-
formance of wings at supersonic speeds.

The series of four delta wing models varied in leading-edge camber only. Wing
leading-edge camber was achieved through a deflection of the outboard 30 percent of
the local wing semispan of a reference 75° swept flat delta wing. The four wing
models had leading-edge deflection angles dF of 0°, 5°, 10°, and 15° measured
streamwise.

Surface pressure data showed that the influence of Mach number on the lee-side
pressure is directly related to the angle of attack and wing camber. Data for the
wings with &p = 10° and 15° showed that hinge-line separation dominated the lee-
side wing loading and prohibited the development of leading-edge separation on the
deflected portion of wing leading edge. However, data for the wing with & = 5°
showed that at an angle of attack of 5° a vortex was positioned on the deflected
leading edge with reattachment at the hinge line.

Flow visualization results have been presented which detail the influence of
Mach number, angle of attack, and camber on the lee-side flow characteristics of
conically cambered delta wings. Analysis of photographic data identified the exis-
tence of 12 distinctive lee-side flow types. These 12 flow types were then further
categorized into two groups identified as having either one or two dominant features
in the lee-side flow field. The first group of flow types were those which had a
single dominant flow feature which emanated from either the leading edge or the hinge
line. The second group of flow types were those which had features which emanated
from both the wing leading edge and wing hinge line.

In general, the aerodynamic force and moment data correlated well with the
pressure and flow visualization results. In particular the aerodynamic data showed
that only the wing with 6F = 5° consistently provided improved aerodynamic perfor-
mance compared with that of the flat reference wing. It was also shown that despite
the large variation in lee-side flow conditions with increasing angle of attack, the
linearity of the pitching-moment curve for all wings was maintained.

INTRODUCTION

It is necessary to develop an understanding of all flows which may exist over a
wing before any significant improvements in wing design may be made. One particular
area of interest in which there exist little experimental data is that of wing
leading-edge vortex flows at supersonic speeds. Experimental studies have concen-
trated on flat delta wings in which several unique flow phenomena have been




identified (refs. 1, 2, and 3). The flat wing data have compared well with computa-
tional results (refs. 4, 5, and 6). However, the continued development of Euler and
Navier-Stokes solvers could be hindered by the lack of experimental data for sepa-
rated flows. To address this important issue, several experimental studies have been
made with the express purpose to develop an understanding of the fundamental charac-
teristics of this class of flow and to define their dependence on various geometric
and flow conditions. These studies are being directed from both the experimental and
computational viewpoints (refs. 6 and 7).

This present experimental study is a direct extension of the work reported in
references 3 and 6. The purpose of this paper is to determine the influence of wing
camber on the lee-side flow characteristics of delta wings. An experimental investi-
gation was performed in which surface pressure coefficient data, flow visualization
data, and force and moment data were obtained on four conical delta wing models which
differed in leading-edge camber. Experimental flow visualization data were obtained
over a range of flow conditions to determine the various flow mechanisms which occur
on the lee side of cambered delta wings. Extensive surface pressure coefficient data
were obtained to evaluate flow conicity, the effect of Reynolds number, and scale
effects both at angle of attack and angle of sideslip. Force and moment data were
obtained to evaluate the potential of separated flows to improve the performance of
wings at supersonic speeds. These results provide a comprehensive set of experi-
mental data which may be used by the aerodynamic community to evaluate existing pre-
diction techniques and to assess the separated flow wing design concept.

SYMBOLS
b span of undeflected wing model, 18.000 in.
. .. i f
C axial-force coefficient, éﬁiél__QEES
Cp drag coefficient, Dggg
Cp,min minimum drag coefficient
. . i f
C 1ift coefficient, Lift
L as
CLa lift-curve slope at Cp = 0.00
C rolling-moment coefficient, Rolling moment
l asb
Cm pitching-moment coefficient, Pltchlng_moment
gSc
Cm, o zero-1lift pitching-moment coefficient
Cxn noxrmal-force coefficient, Normaésforce
1 ..
CN normal-force coefficient on lower surface
u .
CN normal-force coefficient on upper surface
. .. Yawi moment
Cnh yawing-moment coefficient, awing

gsb




al

L/D

(L/D) mae

WF

WOF

b - p,
pressure coefficient, ———

Side force
gs

side-force coefficient,
mean aerodynamic chord of undeflected wing model, 22.390 in.
lift-drag ratio

maximum lift-drag ratio

configuration length of undeflected wing model, 33.588 in.

Mach number

component of Mach number normal to wing leading edge,
M cos A(1 + sina tan?A)1/2

local static pressure, lb/ft2

free-stream static pressure, lb/ft2

free-stream dynamic pressure, lb/ft2

Reynolds number per foot

reference area of undeflected wing model, 302.292 inZ2
wing-forebody

wing without forebody

longitudinal distance from model nose, in.

spanwise distance from model centerline, in.

vertical distance from model upper wing surface, in.

angle of attack, deg

angle of attack normal to wing leading edge, tan"l E%g—%y deg
angle of sideslip, deg
wing leading-edge sweep parameter, where B = M2 -1

streamwise deflection angle of wing leading edge, deg
fraction of local wing semispan referenced to undeflected wing model

wing leading-edge sweep angle, deg



MODELS AND TESTS
Model Description

The test program included a series of four delta wing models which varied in
leading-edge camber only. Wing leading-edge camber was achieved through a deflec-
tion of the outboard 30 percent of the local wing semispan of a reference 75° swept
flat delta wing. The four wing models have leading-edge deflection angles of 0°, 5°,
10°, and 15° measured streamwise. This method of defining the parametric wing set
resulted in a reduction in wing span and planform area and an increase in wing
leading-edge sweep compared with that of the flat wing. However, this parametric
study should provide a true representation of a simple vortex flap system. The geo-
metric characteristics of the four wing models are listed in table I, and details of
the wing models and supporting hardware are depicted in figures 1 through 4. Fig-
ure 1 is a sketch of the wing-body model assembly and figures 2, 3, and 4 contain the
details of the wing, balance block, and fuselage, respectively. A photograph of the
flat delta wing model is shown as figure 5 and a photograph of the &y = 10° cam-
bered wing is shown as figure 6.

To minimize the effect of airfoil shape, the leading edge was made sharp and
the wing upper surface was flat. The wing lower surface consisted of a bevel angle
of 10° measured normal to the wing leading edge. This wedge surface extended inboard
to a maximum thickness of 0.600 in., which then remained constant. Each wing was
fitted with a minimum conical body which emanated from the wing apex and extended
back to 48 percent of the model length. The conical body changed to a cylindrical
balance housing which was common to all four delta wings. Both the conical body and
balance block were symmetrically located about the wing upper surface. The resultant
wind-tunnel models were conical on the upper surface to a value of x/I of 0.48 and
were nearly conical, except for the minimum balance housing, over the remainder of
the model length. All wings were designed to accept a minimum fuselage forebody
which extended beyond the wing apex, as shown in figures 1 and 4. A limited amount
of testing was conducted on the delta wing with &p = 5° with and without the
extended fuselage.

The upper surface of each wing was instrumented with six spanwise rows of
evenly spaced pressure orifices located at 0.10, 0.20, 0.30, 0.60, 0.80, and 0.90 of
the model length as indicated in figure 1. The pressure orifices were distributed
spanwise between 0 and 90 percent of the local semispan in increments of 5 percent at
%/l stations of 0.20, 0.30, 0.60, 0.80, and 0.90. At the most forward station
(x/1l = 0.10), the pressure orifices were alternated between the left and right side
of the wing and only extended to 70 percent of the wing semispan. Presented in
table II is a listing of all pressure orifice locations for the flat wing. The
pressure orifices for the cambered wings (GF = 5°, 10°, and 15°) were at the same
spanwise positions, measured along the wing surface, as those for the flat wing.
The streamwise locations of each spanwise row of pressure orifices for the cambered
wings were identical to those for the flat wing. All pressure tubing was routed
internal to the model and terminated within the model at two locations on the lower
surface of the wing. (See fig. 2.) For flow visualization and force and moment
testing, the pressure tube model exit locations were covered with a flush-mounted
plate. For pressure tests, two multiple pressure tube connector pads (figs. 2 and 7)
were attached to the model to route the tubes to a scanning-valve, pressure-gauge
system mounted external to the tunnel. Location and size of the two multiple pres-—
sure tube connector pads were designed to minimize their interference on the wing
lee~side flow characteristics.




All wing models were mounted to a common balance housing (fig. 3) which was con-
nected to the permanent model-actuating system through a balance and sting arrange-
ment. All wing models also employed the same multiple pressure tube connectors and
external tubing.

‘Test Conditions

A wind-tunnel test program was conducted in the low Mach number test section of
the Langley Unitary Plan Wind Tunnel (ref. 8) to obtain surface pressure, flow visu-
alization, and force and moment data.

The pressure and force data were obtained at angles of sideslip from -8° to 8°
and angles of attack from -4° to 20° for the nominal test conditions listed in the
following table:

Mach Stagnation Stagnation Reynolds
number pressure, lb/ft2 temperature, °F number per foot
1.50 1051 125 2 x 106
1.70 1114 125 2 x 109
1.70 557 125 1 x 108
2.00 1254 125 2 x 106
2.40 1521 125 2 x 106
2.80 1875 125 2 x 106
2.80 937 125 1 x 109

To ensure fully turbulent flow over the model surface for all testing, boundary-
layer transition strips composed of No. 60 sand grit were applied 0.2 in. behind the
wing leading edges (measured normal to the leading edge) and 1.2 in. aft of the model
nose (ref. 9). The transition strips were 0.0625 in. wide.

Balance chamber pressure was measured during the force tests with a pressure
transducer mounted external to the wind tunnel and connected by pressure tubing to a
pressure probe mounted within the balance chamber. Force and moment data were cor-
rected to free-stream static pressure at the model base. Angles of attack for force
and moment data were adjusted for flow misalignment and sting and balance deflec-
tions. The force and moment data were reduced relative to the wing upper surface.
Pressure data angles of attack were adjusted for flow misalignment only. The pres-
sure data angles of attack were not adjusted for sting and balance deflections
because of the unknown influence of the pressure tubing during testing. A discussion
of the pressure test angle of attack is contained in appendix A.

Flow Visualization Techniques

In addition to the surface-pressure data and force and moment data three types
of flow visualization data were obtained. Vapor-screen photographs were obtained to
provide information on the flow field above the wing leeward surface, and both tuft
and oil-flow photographs were used to examine the flow characteristics on the model
surface. Model preparation for all flow visualization tests consisted of painting
one coat of flat black paint over a coat of zinc chromate primer.




Vapor-screen photographs were obtained by adding water in the diffuser down-
stream from the tunnel test section until a uniform vapor was produced in the test
section. The test conditions which provided the best vapor quality for R = 2 x 10°
are given in the following table:

Mach Stagnation Stagnation , o
number pressure, lb/ft2 temperature, °F Dew point, °F
1.50 1051 90 9

1.70 1114 100 13

2.00 1254 117 19

2.40 1521 125 25

2.80 1875 125 29

The dew point was measured in the tunnel settling chamber and corrected to stan-
dard atmospheric conditions. The nominal test conditions at which pressure and force
data were obtained correspond to a dew point of -20°F.

A high-intensity tungsten light source mounted outside the tunnel on the side-
wall was used to produce a thin light sheet across the tunnel test section. The
light sheet was positioned normal to the flow and was positioned so that the model
could be moved longitudinally to align the light sheet with the desired location.
Photographs were taken by a camera mounted to the ceiling inside the tunnel and
located approximately 3 ft downstream from the model.

Tuft photographs were obtained by affixing fluorescent minitufts to the model
surface and illuminating the model with ultraviolet light. Chordwise rows of tufts
were attached to the model with a thinned solution of radio cement. The tufts were
0.75-in. lengths of 0.003-in-diameter nylon monofilament. Each chordwise row of
tufts began at the downstream edge of the leading-edge grit with a longitudinal
spacing of 0.75 in. between tuft-model attachment points. The longitudinal rows
were spaced 0.50 in. apart in the spanwise direction, with the first row located on
the model centerline. Tufts were affixed only to the left wing panel so that the
right wing panel could be used for oil-flow photographs. Tuft photographs were taken
through the window by two cameras mounted outside the tunnel on the sidewall door.
The model was rolled 90° (wings vertical) and was illuminated by four ultraviolet
lamps also mounted on the sidewall door.

Oil-flow photographs required the same model-surface flat black painting as
previously discussed. The model surface was then brushed with a mixture of 90W oil
containing yellow fluorescent powder. The model was illuminated and cameras were
positioned the same as for the tuft photographs. During the tunnel start-up period,
the model was kept in a wings-horizontal position to prevent the o0il from running; to
obtain photographs, the model was rolled 90° (wings vertical) and angle of attack was
set by yawing the model. After the model was positioned, approximately 3 to 4 min
was required for the oil-flow pattern to stabilize. Normally, only 3 or 4 different
angles of attack could be documented before the oil had to be replaced.




DISCUSSION

A review of the literature has shown that previous studies of wing leading-edge
vortex flows at supersonic speeds failed to investigate sideslip conditions and
Reynolds number effects and have not fully verified at which conditions conical flow
exists. To address each of these areas of concern in addition to the effect of wing
camber, a parametric set of four conically cambered delta wings have been tested. It
should be noted that the primary purpose of the wings under investigation was to
develop an extensive data base on the fundamental flow characteristics over cambered
delta wings at supersonic speeds. The present wing geometries do not represent any
particular design philosophy but were defined to provide a large variation in flow
conditions based upon the data of references 3 and 6.

An extensive amount of lee-side surface pressure coefficient data, lee-side
flow visualization data, and force and moment data have been obtained on a parametric
set of conically cambered delta wings. This paper addresses the critical elements of
the data collected; however, because of the uniqueness of this data set all the data
are presented in four appendixes (B, C, D, and E). Appendixes C, D, and E are pub-
lished under separate cover in part 2 of this report. Plots of surface pressure
coefficient data are presented in appendix B, and tables of surface pressure coeffi-
cient data are presented in appendix C. Flow visualization data are contained in
appendix D, and force and moment data are contained in appendix E.

This paper reviews the surface pressure distributions first, followed by a look
at the flow visualization results and finally a summary of the force and moment data.

Lee-Side Surface Pressure Distributions

All models have been instrumented with six spanwise rows of pressure orifices to
study conical flow effects and to investigate scale effects along the length of the
wing. Pressure data were obtained on each wing at Mach numbers of 1.50 to 2.80,
angles of attack of -4° to 20°, angles of sideslip of -8° to 8°, and Reynolds numbers
per foot of 2 X 106 and 1 X 10°9. These pressure data are presented in the form of
plots of spanwise surface pressure coefficient.

Unless noted otherwise, all pressure data presented in the paper are for the
spanwise row of pressure orifices located at x/l = 0.90, for a free-stream Reynolds
number per foot of 2 X 10°. The spanwise location of the pressure orifices for all
wings are at equal distances measured along the wing surface. The nondimensional
spanwise position parameter TN is defined with respect to the flat wing. The values
specified for o, B, M, and R are approximate values; their absolute values may
be found in the tabulated listing of appendix C.

Effect of M and o.- Previous experimental studies have shown that both Mach
number and angle of attack have a strong influence on the lee-side pressures of flat
wings with separated flows. To assess the influence of M and o on the lee-side
flow for this cambered wing series, spanwise surface pressure distributions for each
wing are presented in figures 8 through 12. The effect of Mach number on the surface
pressure coefficient for each wing at angles of attack of 0°, 4°, and 12° is shown
in figures 8, 9, and 10, respectively, and the effect of o at M = 1.70 and 2.80
is shown in figures 11 and 12, respectively.




Pressure data at o = 0° appear to vary about the line at €, = 0.00 due to a
change in Mach number. (See figs. 8(a), 8(b), 8(c), and 8(d).) The inability to
achieve Cp = 0.00 may be attributed to the variation in flow angularity, total
pressure, or temperature within the tunnel test section. An examination of the
cambered wing data of figures 8(b), 8(c), and 8(d) shows an expansion occurring at
the sharp break in the wing upper surface (hinge line). As wing camber is increased,
the wing pressures outboard of the hinge line (N » 0.7) increase and the wing pres-
sures at the hinge line decrease due to the increased expansion angle. It is inter-
esting to note that for the wing with 6F = 5°, the expansion is centrally located
about the hinge line (n = 0.7); however, as wing camber is increased the expansion
peak moves inboard and the pressures decrease. This would indicate that flow separa-
tion has occurred at the hinge line. It is difficult to draw any conclusions about
the effect of M at o = 0° because of the previously discussed shift in the data;
however, at positive incidence angles significant effects of M are observed
(figs. 9 and 10). The data clearly show that the relative influence of M on the
lee-side pressures is directly related to the angle of attack and wing camber. At
0 = 4°, the data show a small effect of M which decreases with increasing O, and
at o = 12°, the data for all wings show a significant influence of M. The pressure
data at o = 4° for the wings with &6 = 5°, 10°, and 15° indicate that the influ-
ence of hinge-line separation has increased for the wings with Jp = 10° and 15°
compared with the data at o = 0° despite the varying flow condition at the leading
edges. The data show that at 0o = 4°, the leading edge of the wing with 0 = 5° is
at a positive incidence due to an induced upwash field and the leading edges of the
wings with GF = 10° and 15° are at a negative incidence. A comparison of the data
at o = 12° for each wing (fig. 10) shows that the flow has separated for all wings;
however, the data for the wing with & = 15° (fig. 10(d)) still show a strong
influence of the hinge line. For these thin, sharp-leading-edge, conical wing geome-
tries, lee-side leading-edge separation would not be expected to occur until the
angle of attack exceeds the wing streamwise deflection angle. These results suggest
that the local flow conditions at the wing apex are producing a disturbance which has
perturbed the total wing flow field and are producing a local upwash which then feeds
down the wing. This conclusion is further supported by the variation in the flow
separation angle of attack with changes in camber and Mach number.

To better understand the influence of angle of attack and Mach number on the
lee-side wing loading, plots of variations in angle of attack at Mach numbers 1.70
and 2.80 are shown in figures 11 and 12, respectively. The data for the flat wing
show that increasing angle of attack results in an increase in separation, an
increase in the lee-side wing loading, and an inboard movement of the vortex. (See
figs. 11(a) and 12(a).) The data for the three cambered wings also show results
similar to those observed for the flat wing; however, there are several interesting
characteristics unique to each of the cambered wings. For the wing with Jp = 5°
at M = 1.70 (fig. 11(b)), the data show that leading-edge separation occurs at
o = 3° and remains confined to the deflected portion of the leading edge (n » 0.7)
until o = 5°, At o = 5°, a vortex resides on the deflected leading edge only, with
reattachment at the hinge line. The resultant pressure distribution for this condi-
tion would appear to be beneficial to achieving good aerodynamic performance. An
increase in 0 to 6° produces a large change in the flow field, and the vortex
migrates off the flap moving inboard and increases in size. Further increases in a
result in spanwise pressure distributions similar to those observed for the flat
wing.

The data for the wings with Jp = 10° and 15° show that the hinge-line separa-
tion persists for all angles of attack and appears to dominate the leading-edge




separation and resultant lee-side wing loading. Another observation is the large
influence of Mach number on the leading-edge flow condition. At M = 1.70, the data
show that leading-edge separation has occurred (negative CP) at o = 6° for

§p = 10° (fig. 11l(c)) and at o = 8° for GF = 15° (fig. 11(d)), but at M = 2.80
the data (figs. 12(c) and 12(d)) show that the leading edge is in compression at both
of these angles of attack. The cambered wing data of figures 11 and 12 have consis-
tently shown that wing lee-side leading-edge separation occurs at angles of attack
less than the wing leading-edge deflection angle.

Effect of PB.- To provide insight into the lee-side flow over delta wings at
sideslip conditions, spanwise surface pressure distributions are presented for all
wings at angles of sideslip from -8° to 8° for o = 12° at M = 1.70 and 2.80, in
figures 13 and 14, respectively. A review of the data presented in figures 13 and 14
shows large effects of B, M, and Sp. The data show an increased loading on the
windward panel and a decreased loading on the leeward panel with increasing sideslip.
This loading would result in a stable rolling moment.

The influence of camber is most readily seen in figure 13 where the data show
significant changes in the leading-edge flow condition with increasing §gp. Also
evident in the data is the large change in the windward pressure distributions with
increased camber. For the wing with 6F = 10° at B = 8°, the data indicate that
the flow separates at the leading edge followed by recompression and then a large
expansion about the hinge line. Similar results are also evident for the wing with
S = 15° at B = 2°, 4°, and 8°, with the data at B = 8° showing that the leading
edge is in compression (Cp » 0.00).

The large influence of angle of sideslip on the lee-side pressure distributions
could not be a leading-edge-sweep-dominated effect because these results contradict
the findings of reference 3 for flat wings. The data of reference 3 showed no sig-
nificant effect of leading-edge sweep on any of the wing upper surface loading char-
acteristics. These present data suggest that a strong coupling is occurring between
the leeward and windward wing panels for this asymmetric condition. At sideslip con-
ditions, a strong cross-flow velocity component develops which flows from the wind-
ward to the leeward wing panel and which increases the windward vortex rotational
velocity and retards the leeward vortex rotational velocity (ref. 7).

The influence of Mach number on the data obtained at sideslip is similar to that
observed for the data of figures 11 and 12, that is, a reduced total lee-side wing
loading and a change in the conditions at which initial lee-side leading-edge sepa-
ration occurs. This observation is especially true for the cambered wings as seen
by a comparison of figures 13(c) and 13(d) with figures 14 (c) and 14(4d).

Effect of R.- Tests were conducted at free-stream Reynolds numbers per foot of
1 X 106 and 2 X 10° in order to determine the effect of Reynolds number on the lee-
side flow characteristics at both angles of attack and angle of sideslip. Spanwise
pressure distributions detailing the effect of Reynolds number R at angle of attack
for each wing are presented for x/I = 0.20 in figure 15 and for x/1 = 0.90 in
figure 16. The influence of Reynolds number at sideslip condition is shown in fig—
ures 17 and 18.

The data of figures 15 and 16 show that decreasing the free-stream Reynolds num-—
ber per foot from 2 X 106 to 1 X 10% results in a nearly constant decrease in pres-—
sure coefficient across the span of the wing with no change in the character of the
pressure distribution. The reduced lee-side wing loading with decreasing Reynolds




number was suggested in reference 6 based upon pressure data for thick, blunt
leading-edge wings.

Additional Reynolds number effects are seen by comparing the data of figures 15
and 16. This analysis shows an additional decrease in the minimum pressure coeffi-
cient value (more negative Cp) for the most aft station (x/7 = 0.90). The scale
Reynolds numbers for these two stations, based upon their theoretical mean aerody-
namic chord, are 0.37 x 106 and 0.74 x 106 at x/I7 = 0.20 and 1.66 X 10° and
3.33 X 10° at x/l = 0.90 for a free-stream Reynolds number per. foot of 1 X 10® and
2 X 106, respectively. The result is an order of magnitude increase in the scale
Reynolds number between the data obtained at a free-stream Reynolds number per foot
of 1 X 10 at x/l = 0.20 and the data obtained at a free-stream Reynolds number per
foot of 2 x 106 at x/Il = 0.90. A comparison of these data shows a lé-percent
increase in the minimum value of the lee-side pressure coefficient for the wing with
§gp = 0°. (See figs. 15(a) and 1l6(a).) Similar results also are evident for the
cambered wings. Additional scale Reynolds number effects are shown in figures 19
through 22.

The effect of Reynolds number at sideslip is shown for all wings in figqures 17
and 18, respectively. Spanwise pressure distributions at M = 1.70, o = 12°, and
B = 8° (fig. 17) and B = -8° (fig. 18) show results similar to those observed in
figures 15 and 16. The increased values of pressure coefficient caused by a reduc-
tion in Reynolds number are not limited to conditions which produce negative Cp
values. The pressure data of figure 17(d) show that this increased pressure coeffi-
cient is observed at all flow conditions whether the flow is in a compression or
expansion. Further review of the tabulated pressure coefficients of appendix C
verified this effect. From a wing design point of view, a reduced Reynolds number
would be detrimental to aerodynamic performance. Wing performance at supersonic
speed has been shown to be a strong function of the distribution of the wing loading
between the upper and lower wing surfaces such that any reduction in the lee-side
contribution to the total wing loading would inhibit efficient aerodynamic
performance.

Conicity and scale effects.- This section of the paper presents plots contain-
ing the pressure data from all spanwise rows of pressure orifices in order to estab-
lish flow conicity conditions for each wing. The data are also used to investigate
scale Reynolds number effects. The scale Reynolds numbers based upon the theoretical
mean aerodynamic chord for each wing station are 0.37 X 106 at x/7 = 0.10,

0.74 x 106 at x/1 = 0.20, 1.1 x 106 at =x/1 = 0.30, 2.2 x 10° at x/I = 0.60,
2.95 x 10® at x/I = 0.80, and 3.32 x 10% at x/l = 0.90 for a free-stream Reynolds
number per foot of 2 X 106.

Presented in figures 19 and 20 are data for each wing at o = 12°, M = 1.70
and 2.80, respectively. The oscillatory nature of the data for x/7 = 0.10 is a
result of the alternating left- and right-hand location of the surface pressure
orifices on the wing, which would tend to magnify any flow or geometry asymmetries.
The nonconical nature of the flow may be attributed to the nonconical balance hous-
ing. For x/l values between 0.00 and 0.48, the balance housing is conical and
extends to 22 percent of the semispan. The pressure values in this region of the
wing (x/7 = 0.20 and 0.30) are equivalent and the influence of the balance housing
on the pressures is a rise in the local pressure at N = 0.25. For values of x/1
between 0.48 to 0.58, the balance housing changes to a cylinder which continues aft
to x/7 = 1.00. The spanwise extent of the balance housing is to n = 0.2 at
x/l = 0.60, n = 0.15 at x/l = 0.80, and n = 0.13 at x/I = 0.90. The spanwise
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location of the balance housing side of the body correlates quite well with the
observed pressure rise at each location of spanwise pressure taps. These effects of
the balance housing are evident in all the data presented.

The data for J&p = 0° of figures 19(a) and 20(a) show that the flow is basi-
cally conical with slight deviations at x/7 = 0.10 and at the inboard region of
all stations. A comparison of the pressure data in figure 19(a) shows a 1l3-percent
decrease in the minimum pressure coefficients between x/7 = 0.20 and 0.90. There is
not any noticeable change in the pressures for M = 2.80 probably because of the
influence of the vacuum pressure limit. Further review of the data of figures 19
and 20 shows increasing deviations from flow conicity with increasing wing camber.
A comparison of figures 19(b), 19(c), and 19(d) shows that the wing with Jp = 5°
is as conical as the wing with Jp = 0° except for a slight change in the leading-
edge conditions. An increase in wing camber to Jp = 10° produced an increased
scattering of the data, and at 6F = 15° the flow appears to be nonconical. Similar
characteristics were also evident in the M = 2.80 data of figure 20. The data pre-
sented in figures 19 and 20 are for o = 12° which is a condition of minimal
leading-edge separation for the wing with &p = 15°. A review of the tabulated data
of appendix C shows that the lee-side flow over the cambered wings does approach
conical flow at higher angles of attack once extensive leading-edge separation has
occurred. The data suggest that flow conicity is not guaranteed by conical geometry
but that model geometry limitations such as extreme camber must be addressed.

The data of figures 21 and 22 are used to evaluate flow conicity and scale
effects at sideslip. Presented in figure 21 are the windward pressures at M = 1.70,
o = 12°, and R = 8°, and figure 22 contains the leeward pressures. The plots of
surface pressure coefficients at sideslip conditions were created by combining the
data for x/l = 0.60, 0.80, and 0.90 obtained at B = 8° with the data for
x/1l = 0.10, 0.20, and 0.30 obtained at B = -8°. All the pressure data of figure 21
show a large effect of the balance housing in the spanwise pressure distributions,
whereas the leeward pressures show only a minimal effect. The windward flow field
would be dominated by large cross-flow velocities which would interact strongly with
the balance housing as the flow moves across the wing centerline toward the leeward
wing panel. The windward data show that the influence of wing camber is adverse to
flow conicity for wings in sideslip. The leeward data (fig. 22) show increased
conical flow compared with the windward data, and there appear to be no significant
effects of wing camber. The data presented in figures 21 and 22 show large non-
conical flow regions on all wings and that flow conicity was greatly influenced by
the balance housing; as a result, conclusions could not be drawn concerning possible
Reynolds number effects.

Effect of camber.- The previous sections presented the data as a function of
various flow parameters for each wing geometry. This section presents cross plots
of these data in order to emphasize the effect of wing camber. Presented in fig-
ures 23 and 24 are plots detailing the influence of Sp, and shown in figures 25
and 26 are plots detailing the influence of B.

Spanwise surface pressure coefficient plots are presented in figure 23 for
angles of attack of 0°, 4°, 8°, and 12° at M = 1.70. At o = 0° (fig. 23(a)),
the data clearly show the influence of the hinge line (n = 0.7) and the intersection
of the wing and balance housing (n = 0.12). An increase in leading-edge camber
results in an increase in pressure coefficient outboard of the hinge line and a
decrease in the pressure coefficient inboard of the hinge line. The only irregular
behavior noticed in the pressures occurred at N = 0.7 where an increase in wing
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camber first produced a reduction in pressure coefficient, which was then followed
by an increase in pressure coefficient with further increases in camber. The data
indicate that for GF = 5° the flow is attached at the wing upper surface leading
edge and remains attached as it expands about the hinge line; this results in a pres-
sure distribution which is centrally located about the hinge line. As camber is
increased (8 = 10° and 15°), the character of the pressure distribution near the
hinge line changes dramatically for both Jp = 10° and 15°. The data show an
attached flow condition at the leading edge which extends to the hinge line; this is
followed by a large expansion region which lies inboard of the hinge line extending
from 1N = 0.7 to 0.55. This type of pressure distribution would indicate that the
flow has separated. A further review of the data of figure 23(a) shows a nearly
equal increment in the leading-edge pressures (N » 0.7) between GF = 0° and

§p = 5° and between {8 = 5° and Jp = 10°; however, the increase in leading-edge
pressure for GF = 15° compared with 6F = 10° 1is considerably less. The data at
o = 4°, 8°, and 12° of figures 23(b), 23(c), and 23(d), respectively, in addition
to the data at o = 0° indicate that the four wings can be divided into two groups
with each group having similar hinge-line flow characteristics. The first group con-
sists of the wings with Jp = 0° and 5°, which are characterized by an attached flow
condition at a = 0° and leading-edge flow separation at the higher angles of
attack. The data show that the lee-side pressure distribution for these two wings
is dominated by the leading-edge flow conditions. The second group consists of the
wings with GF = 10° and 15°, which appear to be dominated by the flow character-
istics at the hinge line. The data at o = 0°, 4°, and 8° for both the wings with
6p = 10° and 15° indicate that the lee-side flow is dominated by hinge-line separa-
tion. The data show that not until o = 12° (fig. 23(d)) do all four wings develop
similar lee-side flow characteristics. Similar characteristics were also observed
for all wings at M = 2.80, as shown in figure 24. These characteristics are dis-
cussed in more detail in the section "Lee-Side Flow Visualization."

The influence of camber on the lee-side pressures at sideslip conditions is
presented in figures 25 and 26 for M = 1.70 and 2.80, respectively. Both the data
at M= 1.70 and 2.80 show that camber has a greater influence on the windward
pressures than the leeward pressures. The data of figures 25(a) and 26(a) show that
the majority of the variation in the windward surface pressures with camber is con-
fined to the deflected portion of the wing leading edge. The pressure data show
that the average value of wing leading-edge pressure coefficient varies from -0.35
for 8p = 0° to 0.00 for & = 15° at M = 1.70 and from -0.15 for &p = 0° to
0.10 for GF = 15° at M = 2.80. This significant variation in wing loading on the
windward wing panel combined with the nearly constant loading on the leeward wing
panel would combine to produce a less stable configuration in rolling moment with
increasing leading-edge camber.

Effect of forebody.- Experimental pressure data presented in previous sections
of this paper for a series of conically cambered delta wings showed that the lee-side
flow characteristics and the leading-edge flow characteristics are dependent upon
the leading-edge camber. The data also showed that only for the cambered wing with
0p = 5° did classical leading-edge separation (vortex) conditions exist. The pres-
sure data for the wing with GF = 5° also indicated that for a limited set of con-
ditions (o = 4° and 5°), the flow over the wing was characterized by a leading-edge
separation which was confined to the deflected portion of the wing leading edge.

This flow condition is theorized as being optimum for aerodynamic performance of a
wing with separated flow (ref. 6). To extend the analysis of the wing with & = 5°,
the model was fitted with a fuselage forebody in order to assess forebody effects on
the leading-edge separation characteristics. The resultant wing-forebody model was
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nonconical along the entire length. Details of the fuselage forebody are contained
in figures 1 and 4.

The effect of Mach number, angle of attack, and flow conicity is summarized in
figures 27, 28, and 29, respectively. The effect of Mach number on the spanwise
surface pressure distributions at o = 0°, 4°, 6°, and 12° for the wing with
§p = 5° with forebody is similar to the wing with 5F = 5° alone results of fig-
ures 8, 9, and 10. The lee-side flow appears to be dominated by the leading-edge
flow separation. An interesting characteristic of the data was observed for o = 6°
(fig. 27(c)) where the leading-edge vortex reattachment line is observed to migrate
inboard from n = 0.7 at M=1.50 to N =0.5 at M= 2.00. The extent of this
migration could not be resolved because data were not obtained for Mach numbers
above 2.00.

A comparison of the data at o = 6° and M = 1.70 (fig. 27(c)) with the data
for the wing alone at M = 1.70 in figure 1l1(b) shows an increased loading on the
deflected portion of the wing leading edge and a delay in the inboard migration of
the vortex. These characteristics will be discussed further in the discussion of
figures 28 and 30.

The effect of angle of attack on the spanwise surface pressure distribution at
M = 1.70 is presented in figure 28. A comparison of the data of figure 28 with the
data of figure 11(b) shows that the forebody appears to be increasing the strength
and delaying the inboard migration of the leading-edge vortex, as evident in the data
at o = 6° in both figures. The increased vortex strength, as indicated by the
reduced pressure coefficient at a given angle of attack, can be attributed to the
induced upwash field caused by the forebody which results in an effective increase
in wing incidence angle. It should be noted that even though the effective increase
in wing incidence is increasing the vortex strength it is not producing an equivalent
inboard migration of the vortex as would be expected. The reduced inboard migration
of the leading-edge vortex may be attributed to the outward shift in the initial wing
leading-edge separation point with employment of the forebody. For the wing-alone
geometry, initial separation occurs at the apex (N = 0.0, x/L = 0.00); however,
once the forebody is added, initial separation occurs at the wing-forebody juncture
(n =1.0, x/l = 0.12); thus, more flap area is provided on which the vortex may act.
This outboard shift in the initial separation point also produces nonconical flow as
shown in figure 29. Spanwise surface pressure distributions are only presented for
x/l = 0.20, 0.30, 0.60, 0.80, and 0.90 because the pressure orifices at x/I = 0.10
have been covered by the forebody. In addition, the fuselage extended spanwise to
n=0.58 at x/7 = 0.20 and to N = 0.39 at x/Il = 0.3. The data of figure 29
show a trend toward conical flow as you move aft on the wing. At x/l = 0.20, the
data show a large expansion located on the leading edge only (N » 7) with recompres-
sion on the hinge line. At x/7 = 0.30, the leading-edge expansion has been reduced
and the recompression has migrated to n = 0.45. The final three spanwise rows of
pressures show conical flow with reattachment at N = 0.3. These data were obtained
at o = 12° where the leading-edge separation would be expected to dominate the
lee-side flow field. The delay in the inboard migration at x/7 = 0.20 and 0.30
suggests that the forebody itself is acting as a boundary to the flow and prohibits
the inboard migration of the leading-edge vortex at the most forward stations.

A direct comparison of the wing with GF = 5° with and without forebody is
presented in figure 30. Surface pressure coefficient data are shown for M = 1.70
at o = 4°, 5°, 6°, 8°, and 12° in figures 30(a), 30(b), 30(c), 30(d), and 30(e),
respectively. The data clearly show that addition of the forebody increases the
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performance potential of the wing with Jp = 5° by increasing the loading on the
flap and delaying the inboard migration of the vortex. These results were consistent
at angles of attack of 4°, 5°, 6°, and 8°. At Q = 12°, the data of figure 30(a)
show that both geometries have a similar lee~-side wing loading. However, as noted
previously the flow field for the wing with forebody is nonconical in which the load-
ing on the forward portion of the wing is concentrated on the deflected leading edge.

Lee-Side Flow Visualization

Extensive flow visualization data were obtained on all wings to aid in defining
the lee-side flow phenomena. Three types of flow visualization data were obtained,
with vapor screen photographs being the primary diagnostic tool.

Flow visualization methods.- Vapor screen flow visualization photographs pro-
vide information on the flow field above the wing in a plane perpendicular to the
free-stream flow direction. Previous correlations with pressure data and other flow
visualization techniques have shown that vapor screen flow visualization data can be
used to investigate the formation of shocks, flow separation, wakes, or any viscous
dominated effect. However, it should be noted that the physics which governs the
formation of vapor screens is not completely understood, and therefore there is some
question as to the interpretation of the data.

The other two types of flow visualization data were tuft and 0il flow photo-
graphs which were used to investigate the flow characteristics on the wing upper
surface. Tuft photographs provide information on the flow direction within the
outer portion of the boundary layer. The tufts should only be directly influenced
by the local velocities and not by pressure gradients or viscous shear forces. On
the other hand, oil flow patterns are influenced by the local pressure gradients,
viscous shear forces, and the flow velocities. The dominant mechanism which governs
the development of an oil flow pattern is also subject to other effects such as flow
conditions and oil viscosity. Each of the three flow visualization techniques
employed in this study has particular deficiencies, yet these three methods are the
only nonintrusive experimental techniques to obtain information on the local flow
field about a wing at supersonic speeds.

Shown in figure 31 are representative photographic data of each of the three
flow visualization techniques for the wing with Jp = 5° with forebody at M = 1.70
and O = 6°. Based upon the previously presented pressure data, these conditions
correspond to a leading-edge separation which is located on the deflected portion of
the wing leading edge. A review of the photographic data verifies the existence of
these suggested flow conditions. The vapor screen photographs clearly show a separa-
tion bubble located on the deflected portion of the leading edge, and the tuft and
0il flow patterns support this observation as indicated by the abrupt change in flow
pattern for both at the hinge line. Outboard of the hinge line, both the tuft and
0il flow photographs show an outboard flow direction, and inboard of the hinge line
the photographs show a streamwise flow pattern. The oil flow photographs also show
an accumulation of oil at the wing leading edge; this indicates a low pressure region
associated with the initial expansion.

The remainder of this section only presents the vapor screen flow visualization
results; however, periodic reference will be made to the tuft and oil flow photo-
graphs contained in appendix D. The wing with 6 = 5° alone and wing with fore-
body vapor screen photographs were similar; however, the data obtained with the
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forebody were of better quality. As a result, the data obtained with the forebody
are presented.

Effect of o, M, and Op.- The experimentally obtained pressure data showed
that increasing angle of attack produced increased separation and an inboard migra-
tion of the separation region or vortex. An example of these characteristics is pre-
sented in figure 32 for the wing with GF = 5° with forebody at M = 1.70. The
photographic data show increasing amounts of leading-edge separation with increasing
angle of attack. At o = 0° the lee-side flow field is free of separation and
shocks as shown by the uniform density of the flow field. At o = 4° the data show
both a small separation bubble at the leading edge and inboard of the hinge 1line.

An increase in angle of attack to 5°, 6°, and 7° results in an increase in leading-
edge separation and a reduction in the separation inboard of the hinge line. The
photographs for o = 4°, 5°, and 6° show that the leading~edge separation is con-
fined to the deflected portion of the wing leading edge as suggested by the pressure
data of figure 28. However, unlike the pressure data, the photographic data show
that flow separation is also confined to the deflected portion of the wing at o = 7°.
Further increases in angle of attack to 8° show an inboard migration of the vortex
off of the flap, and at o = 16° a classical wing leading-edge vortex exists which
lies above the wing surface. Also evident in the photograph for o = 16° are a
cross-flow shock under the main vortex and a secondary separation located outboard
of the hinge line. The occurrence of both of these conditions appears to be inter-
related and is discussed in more detail later along with other observed flow
phenomena.

As previously noted in figures 9 and 10, the primary influence of increasing
Mach number for all wings without forebody was a reduction in the lee-side wing load-
ing with no apparent change in flow characteristics. However, a review of the flat
wing data of reference 1 suggests that increasing the free-stream Mach number could
result in the formation of shocks or the increased occurrence of attached flow.
Presented in figure 33 is the effect of increasing Mach number on the lee-side flow
characteristics of the wing with 6F = 10° at o = 8° and 16°. The o = 8° photo-
graphs show that increasing Mach number from 1.70 to 2.80 changed the flow on the
deflected leading edge from a leading-edge bubble at M = 1.70, 2.00, and 2.40 to a
cross—flow shock at 2.80. 1Inboard on the hinge line the flow field is characterized
by a vortex emanating from the hinge line. At an angle of attack of 16° the data
show that an increase in the free-stream Mach number produced an extremely complex
shock and vortex system which lay above the wing. The photograph for M = 1.70
shows a classical leading-edge vortex system which is quite similar to the condi-
tions observed in figure 31. As the Mach number is increased to 2.00, a shock
begins to develop on top of the vortex, the shock under the vortex appears to
weaken, and the secondary separation is reduced. At M = 2.40 and 2.80, a second
shock is developed which lies above the vortex feed sheet and emanates from a region
near the hinge line. The data of figure 33 agree qualitatively with the findings of
reference 1 which indicated the development of shocks above a leading-edge vortex
with increases in angle of attack and/or Mach number.

The effect of leading-edge camber on the lee-side flow characteristics is the
final parameter to be addressed. Presented in figure 34 are vapor screen flow
visualization data for each wing at o = 12° and M = 1.70 and 2.80. The photo-
graphs at M = 1.70 show a wing leading-edge vortex for all wings. The data indi-
cate that with increasing wing camber the vortex strength, as indicated by the size
of the darkened region, is reduced and the vortex lies closer to the wing surface.
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At M = 2.80, the flow field varies from a vortex with shock on top for the wings
with GF = 0° and 5° to a shock-induced hinge-line vortex system for the wings
with OJp = 10° and 15°.

Flow classification.- The vapor screen photographs of figures 32, 33, and 34
have shown that lee-side flow characteristics are dependent upon angle of attack,
Mach number, or wing camber. The example flow visualization data presented in the
previous figures have also revealed various complex flow phenomena which were not
observed in previous flow visualization studies. In an attempt to document the
various flow conditions observed in the present study, the flow conditions over the
wings were described by the local flow at the wing leading edge and at the wing
hinge line. A complete description of the flow type for all conditions is contained
in appendix D. The result of this classification effort was the identification of
12 different flow types which could be divided into 2 groups. The first group of
flow types were those which had a single dominant flow feature which enamated from
either the leading edge or the hinge line (fig. 35). The second group of flow types
are shown in figure 36. It includes those flows which had features which emanated
from both the wing leading edge and wing hinge line. The flow visualization photo-
graphs presented in both figures 35 and 36 comprise a range of wing geometries and
flow conditions. 1In general the wings with Jp = 0° and 5° were dominated by
leading-edge flows and the wings with Op = 10° and 15° were dominated by hinge-
line flows. The six single-feature flow types consisted of an attached flow condi-
tion, three leading-edge-only separation conditions, and two hinge-line-only separa-
tion conditions. The six double-feature flow types consisted of leading-edge
separations or leading-edge shock systems in combination with various hinge-line
separation systems. To assist in describing each of these unique flow conditions, a
sketch of the flow field as observed in the vapor screen photograph and the spanwise
surface pressure distribution of each flow type is presented in figures 37
through 48.

Single-feature flows.- Attached flow over the wing upper surface was only
observed on the wings with &g = 0° and 5° at o = 0°. Shown in figure 37 are the
spanwise pressure distribution and a sketch of the flow field for the wing with
§g = 5° at M = 1.70.

The formation of a leading-edge bubble was limited to the wing with 6p = 5°
at moderate angles of*attack. The results presented in figure 38 are for the wing
with 8p = 5° at M= 1.70 and & = 6°. A bubble is defined as a rotational flow
region which lies on the wing surface and does not induce a rotational flow external
to its core (i.e., all rotational flow is constrained to the core). The bubble
appears to act as an extension of the physical wing surface. For the conditions
presented in figure 38, the leading-edge bubble lies solely on the deflected portion
of the wing leading edge. This condition provides a smooth contour of the wing
upper surface which the external flow field may traverse as it expands about the
wing leading edge. The resultant pressure distribution is characterized by a large
suction plateau located about the deflected portion of the wing followed by an
abrupt recompression at the hinge line. This abrupt recompression occurs at the
most inboard point of the dark region of the vapor screen; this indicates that the
bubble is not inducing any rotationality to the external flow field such as that
observed for a vortex system.

As angle of attack is increased, the bubble will lift from the surface and

develop into a leading-edge vortex as shown in figure 39. These results are for
the wing with &z = 5° at M =1.70 and o = 12°. A review of the flow
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visualization data of appendix D shows that a wing leading-edge vortex did exist for
all wings. In general a leading-edge vortex is characterized by a rotational viscous
core which lies above the wing surface and inboard of the wing leading edge. The
vortex core is connected to the leading edge by a viscous feed sheet. The flow field
external to the vortex core is influenced by the rotational core and is usually
termed "the induced flow field." The extent of the induced flow field can be deter-
mined by the spanwise location of the recompression in the pressure distribution.

The data of figure 39 show that the vortex extends inboard to n = 0.45, yet recom-
pression is occurring at N = 0.30 where flow reattachment is probably occurring.
The region between NN = 0.45 and 0.30 is termed "the induced flow region." Inboard
of n = 0.30, the flow is streamwise, and outboard of n = 0.30, the flow will be
directed outward toward the leading edge. As the induced flow field passes beneath
the vortex, the flow may accelerate to Mach numbers greater than 1.00 and then
recompress through a shock. Another character which may exist in these types of
flows is a secondary vortex. The mechanism from which the secondary vortex develops
is unknown; however, it does not appear to be induced by the shock which lies under
the primary vortex. The induced pressure distribution correlates well to all the
disturbances in the flow field.

The final leading-edge flow condition which was observed was that of a leading-
edge vortex with a cross—-flow shock located on top of the primary vortex. Typical
conditions of this flow type are shown in fiqure 40 for the wing with 6F = 5° at
M=2.00 and o = 16°. As with the leading-edge vortex, this particular flow type
was also observed for all wings. The characteristics of the flow field are the same
as those observed for the leading-edge vortex except for the addition of the cross-
flow shock. The pressure distribution presented at the top of figure 40 does not
show any influence of the cross-~flow shock. These findings are consistent with those
of reference 3.

The final two single-feature flow types are the hinge-line bubble presented in
figure 41 and the hinge-line vortex shown in figure 42. Hinge-line flow types were
only observed for the wings with 6F = 10° and 15°. Representative hinge-line
bubble results are presented for the wing with &gy = 10° at M = 2.80 and o = 0°,
and hinge-line vortex results are presented for the wing with &p = 10° at M = 2.40
and O = 6°. The characteristics of a hinge-line bubble or hinge-line vortex are
similar to their leading-edge counterparts as depicted in figures 38 and 39. An
examination of the induced pressure distributions for the hinge-line separation con-
dition also reveals a similar correlation between the pressures and the details
observed in the vapor screen as that for the leading-edge flows. For all hinge-line
flow phenomena, the flow on the outboard deflected portion of the wing leading edge
was observed to have a large range of pressure coefficient values which varied
between large positive values, as observed in figure 41, to slightly negative values,
as shown in figure 42. The flow visualization data of appendix D also showed that
the hinge-line separation was the single dominant characteristic of the flow field
of the wings with Jp = 10° and 15° at all conditions tested.

Double-feature flows.- Figures 43 through 48 detail the six double-feature flow
types which were identified in this study. Double-~feature flow types were those
which had major flow characteristics which emanated from both the wing leading edge
and the wing hinge line. All three cambered wings experienced double-feature flow
types.

Presented in figure 43 is a sketch of the details observed in the vapor screen
photograph (fig. 36, upper left) along with the associated spanwise pressure
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distribution for the condition of a leading-edge bubble in combination with a hinge-
line bubble. This particular flow pattern was only observed for the wing with

8g = 5°. The individual character of both the leading~edge and hinge-line bubbles

is identical to the characteristics of an isolated bubble located at either the
leading edge or hinge line. At M = 1.70 and o = 5° for the wing with GF = 5°,
the leading edge is at a positive incidence with respect to the free-stream flow
which results in flow separation at the leading edge. This leading-edge separation
takes the form of a bubble which extends from the leading edge inboard to approxi-
mately 80 percent of the semispan of the wing. The external flow field expands about
the leading-edge bubble and recompresses on the flap between 80 and 70 percent of the
semispan. The flow must then reexpand about the hinge line resulting in a separation
of the boundary layer at the hinge line to produce the second bubble. These charac-
teristics are supported by the pressure distribution shown at the top of figure 43.
The existence of the two bubble system rather than vortices is due to the small
expansion angles at the leading edge and hinge line. If the leading-edge angle was
increased, the leading-edge separation would increase and produce results shown in
figures 38 and 39.

The second double-feature flow type is a leading-edge bubble in combination with
a hinge-line vortex. These characteristics were only observed for the wings with
Sp = 10° and 15°. The particular condition detailed in figure 44 is for the wing
with 6F = 10° at M= 2.40 and o = 8°. This flow type results when the leading
edge is at a small angle of incidence and the hinge-line angle is sufficiently large
to create a strong separation as discussed previously. The supporting spanwise
pressure distribution shows the expansion above the leading-edge bubble followed by
a recompression at 75 percent semispan. The flow then expands about the hinge line
and separates producing a vortex which provides a larger lee-side loading than that
observed for the hinge-line bubble of figure 43.

As discussed previously the primary influence of increasing Mach number on the
lee-side flow characteristics is the development of shocks. Presented in figures 45,
46, 47, and 48 are four double-feature flow types which are all characterized by
strong cross-flow shocks on the deflected portion of the wing leading edge.

The leading-edge bubble with shock and hinge-line bubble flow type was only
observed on the wing with J&p = 5° at M = 2.80. (See fig. 45.) These flow types
are identical to those shown in figure 43 with the exception of the cross-flow shock
on top of the leading-edge bubble. A review of the spanwise pressure distribution
shows a small recompression which correlates well with the location of the cross-
flow shock. The pressure data also show an abrupt recompression of the flow at the
most inboard location of the hinge-line bubble.

Shown in figure 46 is the leading-edge bubble with shock and hinge-line vortex
flow type. This double-feature flow type was observed on both the wings with
Sp = 5° and 10°. The particular conditions documented in figure 46 are for the wing
with O6p = 10° at M = 2.40 and o = 10°. A comparison of these results to those
of figure 44 shows that the formation of the cross-flow shock results from the
increased expansion of the flow about the leading edge. The spanwise pressure dis-
tribution again supports these characteristics observed in the vapor screen
photograph.

At a Mach number of 2.80 both the wings with GF = 10° and 15° experienced

conditions of attached flow with a shock on the deflected leading edge of the wing
followed by a strong hinge-line vortex. Shown in figure 47 are the details of the
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leading-edge shock and hinge-line vortex flow type. This particular condition is
shown for the wing with J§p = 10° at M = 2,80 and a = 12°, For the wing with

Sg = 10° at o = 12°, flow separation would be expected to occur at the leading
edge; however, the vapor screen photograph shows a strong cross-flow shock emanating
near the leading edge. The pressure data show that the flow is expanding about the
wing leading edge with an immediate but gradual recompression occurring over the span
of the flap. As the flow expands about the hinge line, the flow separates and forms
a vortex. Similar characteristics were observed in figure 48 where the double-
feature flow structure was that of a leading-edge shock and hinge-~line vortex with
shock. This particular flow type was only observed on the wing with §gp = 15°. The
condition presented in figure 48 is M = 2.80 and o = 16°. The spanwise surface
pressure distribution is similar to that of figure 47. The cross-flow shock located
on the deflected leading edge produces a dramatic change in the pressures. The flow
appears to expand about the leading edge and undergoes a gradual recompression as it
flows inboard to the hinge line. Inboard of the hinge line, the flow undergoes a
reduction in pressure due to the high-line separation.

Correlation of flow types.- Flow visualization results have been presented which
detail the influence of Mach number, angle of attack, and camber on the lee-side flow
characteristics of conically cambered delta wings. Analysis of photographic data
identified the existence of 12 distinctive lee-side flow types. These 12 flow types
were then further categorized into two groups identified as having either one or two
dominant features in the lee-side flow field. To compile all the flow classification
data of appendix D into a single figure, the classification results are presented as
a function of conditions normal to the wing leading edge. The symbols used to define
the flows are given in table DI. The two correlation parameters are the angle of
attack normal to the wing leading edge Gy minus the wing camber streamwise deflec-
tion angle 5F and the Mach number normal to the wing leading edge My. In a
previous study (ref. 3) of flat delta wings, data were obtained at My above and
below 1.0 in which seven distinctly different flow types were categorized on a
My-0n chart. These flow classification boundaries are depicted as dashed lines in
figure 49. For the present study, data were obtained primarily at conditions of
My < 1.00 as shown in figure 49. The locations of the data points for all wings in
figure 49 are referenced to the values of My and oy derived for the delta wing
with 6F = 0°. The location of the cambered wing data was determined by computing
the value of Ay for the wing with GF = 0°, at a given value of o and M, and
subtracting the value of the free-stream deflection angle of each cambered wing. The
value of My for the cambered wings was the same as those for the wing with
S = 0°. This method of presenting the data resulted in the loss of several data
peints because their (uN - GF) values were less than 0.0.

To assist in identifying the various flow types and the associated wing geom-
etry, the single-feature flows are designated by open or solid symbols, the double-
feature flows are half-solid symbols, and the wing camber is denoted by a tick pro-
truding from either the top, side, or bottom of each symbol. The leading-edge
dominant single-feature flow types are indicated by open symbols and hinge-line
dominant flows are indicated by a solid symbol. To reduce the number of data points
to be plotted on the figure, results are only presented for o = 0°, 4°, 8°, 12°,
16°, and 20°. One result of this limited method of presentation was the omission of
the bubble with shock and hinge-line bubble double-feature flow type from the graph.
This flow type was only observed for the wing with 6F = 5° at M = 2.80 and
0 = 5° and 6°. The attached flow and hinge-line bubble single-feature flow types
were also omitted because they occurred at values of (ay - Op) of 0.0 and below.
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A review of the data shows a division of the cambered wing data based upon the
existence of any hinge-line separation. The data show that a boundary can be drawn
from a point located approximately at My = 0.4, (oyg - GF) = 20, to My = 1.2,

(ay - Op) = 40. BAbove this line, cambered wing data show leading-edge separation
only, and below this line, the cambered wings experience various types of hinge-line
separation. The only discrepancy observed is for the flat wing data (symbols with
no tick) which show leading-edge separation at all angles of attack.

The pressure data indicate that hinge-line separation was an unfavorable condi-
tion which dominated the lee-side wing loading and prohibited the development of
leading-edge separation on the deflected portion of the wing leading edge. The data
of figure 49 provide information which may be useful in future designs by defining
the limiting conditions for the development of hinge-line separation. The data also
show that the angle-of-attack range at which hinge-line separation occurs increases
with increasing Mach number and wing camber. As mentioned previously these results
may be useful as a guide to future wing design studies; however, the data correlation
parameters presented in figure 49 are not easily related to the more traditional geo-
metric and flow parameters. To help clarify the trends of figure 49, the data at
M = 1.70 have been evaluated and presented as a plot of wing camber GF against
angle of attack (fig. 50). This method of presentation produced five distinct flow
regions. The graph shows that only the wing with &p = 5° exhibits an optimum flow
condition, that of a leading-edge separation located on the deflected leading edge.
The data for the wing with Jp = 10° show a double-feature flow condition and the
wing with GF = 15° changes immediately from hinge-line-only separation to leading-
edge-only separation with the dominant loading residing inboard of the wing hinge
line. These flow visualization data are shown to correlate well with the pressure
data.

Forces and Moments

The separated flow wing design philosophy has been extensively studied at sub-
sonic and transonic speeds. These previous (refs. 10, 11, and 12) experimental
studies have resulted in the development of several unique aerodynamic devices, such
as vortex flaps, for the management of flow separation for improved aerodynamic per-—
formance. To assess the merits of the separated flow wing design philosophy at
supersonic speeds, aerodynamic force and moment data were also obtained during
testing.

The aerodynamic characteristics presented in this section of the paper are cor-
related to the pressure and flow visualization data to provide additional insight
into the flow conditions. Representative results will be shown to document the
effect of Mach number and wing camber on all aerodynamic properties. Longitudinal
aerodynamic characteristics were obtained on all wings; however, lateral-directional
characteristics were only obtained for the wing with GF = 5°,

The aerodynamic characteristics of delta wings have been extensively documented.
In reference 13 it was shown that the aerodynamic performance potential at supersonic
speeds is directly related to the value of the leading-edge sweep parameter (B cot )
and 1lift coefficient. These results were based upon the analysis of a limited amount
of data consisting of both delta and nondelta wings. For the present study, the
range of B cot A varied between 0.37 and 0.70 for a Mach number range of 1.70 to
2.80. The data of reference 10 show that for a 75° swept wing, significant improve-
ments in aerodynamic performance would only occur for values of f cot A of 0.5 or
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less. In addition, the pressure data and the flow visualization data discussed pre-
viously showed that large amounts of wing camber can have a detrimental effect on
the lee-side loading and flow structure; this would suggest a loss in aerodynamic
performance with increased wing camber.

The variation in minimum drag and lift~curve slope with Mach number is presented
in figure 51. The data for each wing show that the minimum drag decreases with
increasing Mach number and increases with increasing wing camber, except for the
wing with 6F = 5° at the lower Mach numbers. The increased minimum drag levels
for the wings with SF = 10° and 15° are due to a combination of hinge-line separa-
tion on the leeward wing surface and leading-edge separation on the windward wing
surface. The tabulated force data of appendix E show that minimum drag for the wings
with 6F = 5°, 10°, and 15° occurs at angles of attack of approximately 1.0°, 2.0°,
and 3.0°, respectively. At these angles of attack, the pressure data and the flow
visualization data for the wings with Op = 10° and 15° show that the flow is
separated at the hinge line on the wing leeward surface, and vapor screen photo-
graphs contained in appendix D show a leading-edge vortex on the windward surface.

In comparison, the pressure and flow visualization data for the wing with Jp = 5°
show that the local flow angle is nearly aligned with the wing leading-edge deflec-
tion angle. This would result in attached flow on both the wing upper and lower
surfaces; thus, low drag values are produced compared with those for the wings with
§g = 10° and 15°. The impact of minimum drag on the aerodynamic performance of each
wing is discussed further in the discussion of figures 52 through 55.

The effect of Mach number on the lifting characteristics is shown in the right-
hand side of figure 51. The data show a variation with increasing Mach number simi-
lar to that which would be predicted by linear theoxry. The reduced lift-curve slope
with increasing wing camber and the nonlinear character of each of the cambered wing
curves was unexpected. Linear theory indicates that the lift-curve slope is inde-
pendent of wing camber and would decrease with increasing wing leading-edge sweep.
Perhaps this variation in lift-curve slope with wing camber is due to either the
reduced wing planform area or increased wing sweep for each of the cambered wings
compared with the flat wing. The combination of these geometric characteristics with
the various separated flow conditions which were observed for each wing could account
for the erratic behavior with Mach number. In general it may be concluded that wing
camber can have a negative influence on both the minimum drag value and lift-curve
slope; however, both of these negative effects may be canceled by improvements in
the drag due to 1lift. To attain high levels of aerodynamic performance (L/D), both
the minimum drag and the drag due to lift must be optimized.

Presented in figure 52 are the maximum lift-drag ratios (L/D)pgx and the lift
coefficients at which they occur for each wing. Maximum lift-drag ratios presented
in the left-hand side of the figure show an increase in performance for the wings
with 6F = 0° and 5° and a decrease in performance for the wings with &p = 10°
and 15° with increasing Mach number. The data show that only the wing with Jp = 5°
consistently provides improved aerodynamic performance at all Mach numbers when com-
pared with the wing with &p = 0°. However, the maximum L/D of the wing with
Sp = 10° does exceed that of the wing with &g = 0° at all Mach numbers except at
M = 2.80, where the two values are identical. These data indicate that both the
wings with 6F = 5° and 10° are providing significant improvements in drag due to
lift over the flat wing. The reduced effectiveness with Mach number of the wings
with &8 = 10° and 15° is partially due to the increased minimum drag of each wing
compared with that of the wing with GF = 5°, Shown on the right of figure 52 is
the 1ift coefficient at which (L/D)ygzx ©ccurs for each wing plotted as a function
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of Mach number. The flat wing data show that as Mach number is increased the Ci, at
which (L/D)max occurs is lowered by 40.0 percent from 0.15 at M = 1.70 to 0.09 at
M = 2.80. This trend is typical of a flat wing. The data for the wings with

§p = 5° and 10° show a nearly constant value of C; across the Mach number range
with an equivalent or lower value of Cy, than the wing with 6F = 0°, except at

M = 2.80. The wing with GF = 15° shows characteristics similar to the flat wing

to indicate a lack of camber effectiveness for this geometry.

The evaluation of the performance of each wing is extended to higher lift coef-
ficients to assess the camber effectiveness and the merits of the wing design space
concept of reference 6. The wing design space concept suggests that wing camber
effectiveness is dependent upon the design lift coefficient, the wing loading dis-
tribution between the leeward and windward surfaces, and the value of the leading-
edge sweep parameter. The design space concept was developed based upon the aerody-
namics of delta wings and was initially evaluated in reference 14 for a series of
arrow wings. For the present study, the design space concept is evaluated for design
lift coefficients of 0.2 and 0.4.

Presented in figure 53 are the lift-drag ratio of each wing at Cj = 0.2 and 0.4
plotted as a function of B cot A. The values of B cot A were derived based upon
the flat-wing geometry. The data for C; = 0.2 and 0.4 show trends similar to those
observed in figure 52 for (L/D)pazx- The wing with Jp = 5° shows a definite
advantage over the other two cambered wings at all conditions.

To assess the merits of the wing design space concept, the percent change in
wing performance of each cambered wing, compared with that of the flat wing, was
determined and plotted on the two wing design space charts of figure 54. In comput-
ing the percent change, negative values were noted as 0O percent; for example, see
§p = 15° at B cot A = 0.6. The 0.2 and 0.4 design spaces are defined according to
the Mach number and angle of attack normal to the wing leading edge. The shaded
region is the design space. Within the design space, the wing lift force is dis-
tributed between the leeward and windward surfaces such that the leeward wing loading
is equal to or exceeds the windward wing loading. Also presented on the figure are
lines of constant wing leading-edge sweep (solid lines) and lines of constant
B cot A (dashed lines). The performance data of figure 53 are plotted as solid
circles with the associated percent change in lift-drag ratio noted to the right of
each symbol. Notice that increasing wing camber, B cot A, and design 1lift coeffi-
cient reduces the percent improvement in aerodynamic performance. The data support
the design space concept in which wing camber effectiveness is reduced for conditions
which lie outside the design space.

All data have consistently shown a reduced camber effectiveness with increasing
Mach number and increasing wing camber. To further study the effect of increasing
wing camber on the aerodynamics of delta wings, a detailed analysis of the M = 1.70
data has been conducted. Presented in figure 55 are the drag characteristics of each
wing at M = 1.70. These results clearly support the data of figures 52 and 53.
Also noted in the figure are the conditions at which each cambered wing drag polar
crosses the flat wing polar. This crossover point is seen to occur at an increasing
lift coefficient with increasing wing camber. The data show that the wing with
§p = 5° maintains excellent performance at all lift coefficients, with the wing
with Op = 10° providing slight improvements over the wing with &p = 5° at
CL = 0.15.
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In its most elemental form, improved aerodynamic performance results from
decreasing the axial force at a given angle of attack without losing a significant
amount of normal force. A detailed examination of these normal and axial forces for
each wing is presented in figures 56 and 57. The data of figure 56 show that an
increase in wing camber results in a negative shift in the curve for Cy against o
and a slight reduction in the slope of the curve for Cy @against o at low angles
of attack. It is interesting to note that the shift in the curve for Cy does not
vary linearly with increasing wing camber. At 0o = 0°, the flow has separated at
the leading edge onto the lower surface for all cambered wings and at the hinge line
on the upper surface for the wings with 6F = 10° and 15°. For the wings with
S = 5° and 10°, the upper surface separation is not of sufficient strength to
counteract the loading due to the lower surface separation; thus, a negative shift
in Cy results. The data for the wing with 6F = 15° show no change in Cy from
the wing with GF = 10°; this indicates an increased upper surface separation which
is equal to the increased lower surface separation with respect to the wing with
§p = 10°. At higher angles of attack, all curves show a nonlinearly increasing
trend. The angle of attack at which each curve becomes nonlinear is shown to be
delayed to higher values of angle of attack. The angle of attack at which the break
in the cambered wing normal-force curves occurs correlates well with the development
of a lee-side wing leading-edge separation condition. (See fig. 50.)

A review of the data of figure 57 shows that at o = 0°, there is an increase in
axial force and a reduced camber efficiency (axial-force reduction) with increasing
wing camber. Also noted for each curve is the normal-force break point. For the
wing with &p = 5°, both pressure and flow visualization data showed a migration of
the leading-edge vortex off the deflected leading edge for angles of attack above 6°.
This would produce an increase in the slope of the normal-force curve and a decrease
in the axial-force curve. The data for the wings with &p = 10° and 15° also show
a break in their curves at different angles of attack and for drastically different
flow conditions. The flow visualization data for these wings showed the onset of
leading-edge-only separation at o = 8° and 9° for the wings with 6F = 10° and 15°,
respectively. The longitudinal aerodynamic force data have been shown to correlate
with and support the analysis of the pressure and flow visualization data.

Longitudinal stability characteristics for each wing are presented in figures 58
and 59. The data show that wing camber has a minimal effect on both the zero-lift
pitching moment and the longitudinal stability level at all Mach numbers (fig. 58).
Presented in figure 59 are typical pitching-moment characteristics for each wing at
M = 1.70. The data show that despite the large variation in flow conditions with
increasing angle of attack the linearity of the pitching-moment curve was maintained.

Lateral-directional data are presented in figure 60. Experimental results
were obtained for the wing with 6F =5° at M =1.70 and 2.80, o = 12°, and
B = 0° to 8°. The data show that increasing Mach number reduces the rolling moment
and has a varying effect on the side force and yawing moment. The rolling moment at
sideslip results from the asymmetric lee-side loading on the leeward and windward
wing panels. As Mach number increases, the asymmetric lee-side loading remains but
its contribution to the total wing loading is reduced due to the limiting effect of
the vacuum pressure limit on the lee-side loading. This effect is supported by a
review of the design space chart of figure 54 which indicates that the wing loading
at M = 1.70 would be equally distributed between the upper and lower surfaces;
however, at M = 2.80, the lower surface loading would dominate.
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CONCLUDING REMARKS

An experimental investigation was performed in which surface pressure data, flow
visualization data, and force and moment data were obtained on four conical delta
wing models which differed in leading-edge camber. Experimental flow visualization
data were obtained over a range of flow conditions to determine the various flow
mechanisms which occur on the lee-side of cambered delta wings. Extensive surface
pressure data were obtained to evaluate flow conicity, the effect of Reynolds number,
and scale effects both at angle of sideslip and angle of attack. Force and moment
data were obtained to evaluate the potential of separated flows to improve the per-
formance of wings at supersonic speeds.

The series of four delta wing models varied in leading-edge camber only. Wing
leading-edge camber was achieved through a deflection of the outboard 30 percent of
the local wing semispan of a reference 75° swept flat delta wing. The four wing
models had leading-edge deflection angles GF of 0°, 5°, 10°, and 15°, measured
streamwise.

Surface pressure data showed that the influence of Mach number on the lee-side
pressure is directly related to the angle of attack and wing camber. Data for the
wings with Jp = 10° and 15° showed that hinge-line separation dominated the lee-
side wing loading and prohibited the development of leading-edge separation on the
deflected portion of wing leading edge. However, data for the wing with Jp = 5°
showed that at an angle of attack of 5°, a vortex was positioned on the deflected
leading edge with reattachment at the hinge line. It was also shown that addition
of a forebody increased the performance potential of the wing with Jp = 5° by
increasing the loading on the flap and delaying the inboard migration of the vortex
at a given angle of attack. It was shown that flow conicity is not guaranteed by a
conical geometry but model geometry limitations must be addressed.

Three types of flow visualization data were obtained on all wings to aid in
defining the lee-side flow phenomena. Flow visualization results have been presented
which detailed the influence of Mach number, angle of attack, and camber on the lee-
side flow characteristics of conically cambered delta wings. Analysis of photo-
graphic data identified the existence of 12 distinctive lee-side flow types. These
12 flow types were then further categorized into two groups identified as having
either one or two dominant features in the lee-side flow field. The first group of
flow types were those which had a single dominant flow feature which emanated from
either the leading edge or the hinge line. The second group of flow types were those
which had features which emanated from both the wing leading edge and wing hinge
line. 1In general the wings with 6F = 10° and 5° were dominated by leading-edge
flows, and the wings with 6F = 10° and 15° were dominated by hinge-line flows.

The six single-feature flow types consisted of an attached flow condition, three
leading-edge-only separation conditions, and two hinge-line-only separation condi-
tions. The six double-feature flow types consisted of leading-edge separations or
leading-edge shock systems in combination with various hinge-line separation systems.
Flow visualization data also show that the angle of attack at which hinge-line sep-
aration occurs increases with increasing Mach number and wing camber; these results
may be useful as a guide to future wing design studies.
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In general, the aerodynamic force and moment data correlated well with the
pressure and flow visualization results. In particular the aerodynamic data showed
that only the wing with dF = 5° consistently provided improved aerodynamic per-
formance compared with the flat reference wing. It was also shown that despite the
large variation in lee-side flow conditions with increasing angle of attack, the
linearity of the pitching-moment curve for all wings was maintained.

NASA Langley Research Center
Hampton, VA 23665-5225
March 27, 1987
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TABLE I.- GEOMETRIC

CHARACTERISTICS OF WING MODELS

Characteristic Sp = 0° Sp = 5° g = 10° Sp = 15°
Surface area, in2 ........... - 302.292 302.292 302.292 302.292
Planform area, in2 .......... 302.202 293.475 277.437 264.069
Span, INn. ...eeieeeencenenans 18.000 17.475 16.520 15.724
Length, in. .......c...... 33.588 33.637 33.725 33.799
Leading-edge sweep, deg ..... 75.000 75.440 76.240 76.910
Flap surface area, in“4 ..... 93.039 93.039 93.039 93.039
Flap planform area, in? ..... 93.039 84.222 68.184 54.816

TABLE II.- LOCATION OF SURFACE PRESSURE ORIFICES
x/1 n x/1 n x/1 n x/1 n x/1 n x/1 n

0.1 0.00 0.2 0.00 0.3 0.00 0.6 0.00 0.8 0.00 0.9 0.00
.1 .05 .2 -.05 .3 -.05 .6 .05 .8 .05 .9 .05
.1 -.10 .2 -.10 .3 -.10 .6 .10 .8 .10 .9 .10
.1 .15 .2 -.15 .3 -.15 .6 .15 .8 .15 .9 .15
.1 -.20 .2 -.20 .3 -.20 .6 .20 .8 .20 .9 .20
.1 .25 .2 -.25 .3 -.25 .6 .25 .8 .25 .9 .25
.1 -.30 .2 -.30 .3 -.30 .6 .30 .8 .30 .9 .30
.1 .35 .2 -.35 .3 -.35 .6 .35 .8 .35 .9 .35
.1 | -.40 .2 -.40 .3 -.40 .6 .40 .8 .40 .9 .40
.1 .45 .2 -.45 .3 -.45 .6 .45 .8 .45 .9 .45
.1 -.50 .2 -.50 .3 -.50 .6 .50 .8 .50 .9 .50
.1 .55 .2 -.55 .3 -.55 .6 .55 .8 .55 .9 .55
.1 -.60 .2 -.60 .3 -.60 .6 .60 .8 .60 .9 .60
.1 .65 .2 -.65 .3 -.65 .6 .65 .8 .65 .9 .65
.1 -.70 .2 -.70 .3 -.70 .6 .70 .8 .70 .9 .70
.2 -.75 .3 ~-.75 .6 .75 .8 .75 .9 .75

.2 -.80 .3 -.80 .6 .80 .8 .80 .9 .80

.2 -.85 .3 -.85 .6 .85 .8 .85 .9 .85

.2 -.90 .3 -.90 .6 .90 .8 .90 .9 .90
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e 0il flow

Vapor screen

Figure 31.- Representative flow visualization data for wing with
g = 5° at M =1.70, o = 6°, and R = 2 X 106.
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Flow types

Leading edge Hinge line

Ov D B-HB
O 8 (M B-HV
A Vs A BS-HV
@ ¢ s-nv

¢ s-Hys

Geometry

GF,
deg

Oo
O s
O-10

le

Figure 49.- Lee-side flow classification.
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separation separation
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8p, deg Leading-edge separation on
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Attached flow
| [ |
0 4 8 12 16 20
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Figure 50.- Vortex flap lee-side flow characteristics at M = 1.70.
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GF’
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Crossover
points
Sg» deg
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0 1 1 ] | ]
-.2 0 2
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Figure 55.- Effect of GF on drag characteristics at M = 1.70.
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a, deg

Figure 56.- Effect of §p on normal-force characteristics at M = 1.70.
Solid symbols indicate break points.
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Figure 59.- Effect of Op on pitching-moment characteristics at M
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APPENDIX A

PRESSURE TEST ANGLE-OF-ATTACK CORRECTION

It is difficult to accurately assess the true angle of attack for pressure tests
of wind-tunnel models which require large numbers of pressure tubing to be routed
from the model to an externally mounted pressure transducer. The requirement to
route the pressure tubing external to the model creates both a nonmetric test setup
and a distortion to the model lower surface which would be expected to effect both
the measured balance loads and the deflections of the balance and sting. For the
present test, an accelerometer could not be located within the model due to the
slenderness of the geometry. The only remaining solution to the problem of assessing
the correct angle of attack would be to employ the balance and sting deflection coef-
ficients to approximate a correction to the angles of attack and angles of sideslip.
It should be noted that the application of such a correction is questionable due to
the nonmetric model setup which existed during pressure testing. The nonmetric
arrangement is contradictory to the metric model arrangement from which the balance
and sting deflection coefficient were derived. In addition, there is also a concern
as to the ability to obtain repeatable deflection characteristics due to the binding
or slipping of the rigid tube bundles as the model is rotated through an angle of
attack and/or sideslip.

Despite these known deficiencies, it was deemed appropriate to include enough
information to allow for balance and sting deflection correction to the experimental
data. The balance and sting deflection coefficients obtained for the metric model
setup (force test) are as follows:

Normal force .....cciececeecnn Ceec ettt senonean ceeesecana 0.005308 deg/1lb
Pitching moment ......c.veecececocencanacan cessarseennn 0.001074 deg/in-1b
Side force ...t iiienann st ectesestaeee et anaceneann 0.005300 deg/lb
Yawing moment ......eeeeececcecceeenn ceceeeaeanne ceeesess 0.001155 deg/in-1b

Nonmetric model setup (pressure test) balance and sting deflection coefficients,
which represent test conditions, cannot be obtained. Pressure test forces and moments
are not presented due to the nonmetric arrangement of the test system.
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APPENDIX B

SURFACE PRESSURE COEFFICIENT PLOTS

Experimental pressure coefficient plots for the four delta wings are presented.
Table BI is an index to the plots.

TABLE BI.- INDEX TO SURFACE PRESSURE PLOTS

. . . o, B,
Figure Configuration M R deg deg x/1 Page
Bl(a) [75° delta wing with &g = 0° | Vary |2 x 10° 0 0 | 0.90 | 108
(b) 4 108
(c) 12 109
B2(a) |75° delta wing with & = 0° | 1.50 | 2 x 10 | vary 0 | 0.90 {110
(b) 1.70 110
(c) 2.00 111
(a) 2.40 111
(e) 2.80 112
B3(a) |75° delta wing with & = 0° | 1.70 |2 x 106| 12 | vary| 0.90 | 113
(b) 2.80 113
B4(a) |75° delta wing with G = 0° 1.70 Vary 12 0 [0.10 | 114
(b) 1.70 .20 {114
(c) 1.70 .30 | 115
(d) 1.70 .60 | 115
(e) 1.70 .80 | 116
(£) 1.70 .90 [ 116
(9) 2.80 .10 | 117
(h) 2.80 .20 | 117
(i) 2.80 .30 | 118
(3) 2.80 .60 {118
(k) 2.80 .80 | 119
(1) 2.80 .90 1119
B5(a) }|75° delta wing with & = 0° [ 1.70 Vary 12 -8 | 0.90 |120
(b) 1.70 8 .90 | 120
(c) 2.80 -8 .90 {121
() 2.80 8 .90 |121
B6(a) [75° delta wing with & = 0° 1.50 |2 x 10 | 12 0 |vary |122
(b) 1.70 122
(c) 2.00 123
(d) 2.40 123
(e) 2.80 124
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TABLE BI.- Continued

- -

. . . a, 8,
Figure Configuration M R deg | deg x/l | page
B7(a) |75° delta wing with &p = 0° | 1.70| 2 X 108 | 12 8 | vary | 125
(b) 1.70 4 125
(c) 1.70 2 126
(d) 1.70 -2 126
(e) 1.70 -4 127
(£) 1.70 -8 127
(g) 2.80 8 128
(h) 2.80 4 128
(i) 2.80 2 129
(1) 2.80 -2 129
(k) 2.80 -4 130
(1) 2.80 -8 130
B8(a) |75° delta wing with 6 = 5° | vary |2 x 106 0 0 [0.90 |131
(b) 4 131
(c) 6 132
(d) 12 132
B9(a) [75° delta wing with GF = 5° 1.50 | 2 x 10© Vary 0] 0.90 | 133
(b) 1.70 133
(c) 2.00 134
(@) 2.40 134
(e) 2.80 135
B10(a) |75° delta wing with &p = 5° | 1.70 |2 x 10| 12 |vary | 0.90 | 136
(b) 2.80 136
Bll(a) |75° delta wing with 6p = 5° | 1.70 | Vary 12 0 |0.10 {137
(b) 1.70 .20 | 137
(c) 1.70 .30 | 138
(d) 1.70 .60 | 138
(e) 1.70 .80 | 139
(£) 1.70 .90 | 139
(9) 2.80 .10 | 140
(h) 2.80 .20 | 140
(1) 2.80 .30 | 141
(3) 2.80 .60 | 141
(k) 2.80 .80 | 142
(1) 2.80 .90 | 142
Bl2(a) |75° delta wing with &p = 5° | 1.70 | vary 12 -8 [0.90 | 143
(b) 1.70 8 143
(c) 2.80 -8 144
(d) 2.80 8 144
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TABLE BI.- Continued

, . . o, B,
Figure Configuration M R deg deg x/1 Page
Bl3(a) | 75° delta wing with G0 = 5° 1.50 | 2 x 10° 12 0 | Vary | 145
(b) 1.70 145
(c) 2.00 146
(@) 2.40 146
(e) 2.80 147
Bl4(a) { 75° delta wing with & = 5° 1.70 | 2 x 106 12 8 | Vary | 148
(b) 1.70 4 148
(c) 1.70 2 149
(d) 1.70 -2 149
(e) 1.70 -4 150
(£) 1.70 -8 150
(g9) 2.80 8 151
(h) 2.80 4 151
(1) 2.80 2 152
(3) 2.80 -2 152
(k) 2.80 -4 153
(1) 2.80 -8 153
Bl5(a) |75° delta wing with O = 10°| Vary |2 x 106 0 0 | 0.90 | 154
(b) 4 154
(c) 8 155
(d) 12 155
Blé(a) | 75° delta wing with 6F = 10°| 1.50 | 2 x 10© | vary 0 | 0.90 | 156
(b) 1.70 156
(c) 2.00 157
(a) 2.40 157
(e) 2.80 158
Bl7(a) |75° delta wing with GF = 10°| 1.70 | 2 x 106 12 Vary | 0.90 | 159
(b) 2.80 159
Bl8(a) |75° delta wing with &p = 10°| 1.70 Vary 12 0 0.10 | 160
(b) 1.70 .20 | 160
(c) 1.70 .30 |16l
(d) 1.70 .60 | 161
(e) 1.70 .80 | 162
(f) 1.70 .90 | 162
(g9) 2.80 .10 | 163
(h) 2.80 .20 | 163
(i) 2.80 .30 [ 164
(3) 2.80 .60 | 164
(k) 2.80 .80 | 165
(1) 2.80 .90 165
Bl9(a) |75° delta wing with &p = 10°| 1.70 | Vary 12 | -8 [0.90 |166
(b) 1.70 8 166
(c) 2.80 -8 167
(a) 2.80 8 167
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TABLE BI.- Continued

Figure Configuration M R dZé dzé x/1l | Page
B20(a) | 75° delta wing with GF = 10°| 1.50| 2 x 106 0 0 Vary | 168
(b) 1.70 168
(c) 2.00 169
(a) 2.40 169
(e) 2.80 170
B2l (a) |75° delta wing with & = 10°| 1.50 | 2 X 106 12 0 Vary | 171
(b) 1.70 171
(c) 2.00 172
(a) 2.40 172
(e) 2.80 173
B22(a) |75° delta wing with &p = 10°} 1.70| 2 X 106 12 8 Vary | 174
(b) 1.70 4 174
(c) 1.70 2 175
(a) 1.70 -2 175
(e) 1.70 -4 176
(£) 1.70 -8 176
(g) 2.80 8 177
(h) 2.80 4 177
(i) 2.80 2 178
(3) 2.80 -2 178
(k) 2.80 -4 179
(1) 2.80 -8 179
B23(a) |75° delta wing with 6F = 15°| vary | 2 x 106 0 0 0.90 | 180
(b) 4 180
(c) 8 181
(d) 12 181
B24(a) |75° delta wing with GF = 15°{ 1.50 | 2 X 10© | vary 0 0.90 | 182
(b) 1.70 182
(c) 2.00 183
(a) 2.40 183
(e) 2.80 184
B25(a) |75° delta wing with GF =15°} 1.70 | 2 x 106 12 Vary | 0.90 | 185
(b) 2.80 185
B26(a) |75° delta wing with Jp = 15°( 1.70 vary 12 0 0.10 | 186
(b) 1.70 .20 | 186
(c) 1.70 .30 | 187
(d) 1.70 .60 | 187
(e) 1.70 .80 | 188
(£) 1.70 .90 | 188
(9) 2.80 .10 | 189
(h) 2.80 .20 | 189
(i) 2.80 .30 | 190
(3) 2.80 .60 | 190
(k) 2.80 .80 [ 191
(1) 2.80 .90 [191




TABLE BI.- Concluded

Figure Configuration M R dZé dié x/l | page
B27(a) | 75° delta wing with Jp = 15°| 1.70 Vary 12 -8 | 0.90 ] 192
(b) 1.70 8 192
(c) 2.80 -8 193
(@) 2.80 8 193
B28(a) | 75° delta wing with 6F = 15°| 1.50 | 2 x 106 12 0 Vary | 194
(b) 1.70 194
(c) 2.00 195
(d) 2.40 195
(e) 2.80 196
B29(a) | 75° delta wing with Jp = 15°| 1.70 | 2 X 106 12 8 Vary | 197
(b) 1.70 4 197
(c) 1.70 2 198
(@) 1.70 -2 198
(e) 1.70 -4 199
(£) 1.70 -8 199
(9) 2.80 8 200
(h) 2.80 4 200
(1) 2.80 2 201
(3) 2.80 -2 201
(k) 2.80 -4 202
(1) 2.80 -8 202
B30(a) | 75° delta wing with & = 5° | Vary |2 x 106 0 0 | 0.90 | 203
(b) with forebody 4 203
(c) 6 204
(d) 12 204
B3l(a) | 75° delta wing with & = 5° | 1.50 | 2 x 106 |Vary 0 | 0.90 | 205
(b) with forebody 1.70 205
(c) 2.00 206
B32(a) | 75° delta wing with 8p = 5° | 1.50 |2 x 10 | 12 0 | vary | 207
(b) with forebody 1.70 207
(c) 2.00 208
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